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Abstract We developed a process for preparing SiO2/

TiO2 fibers by means of precursor transformation method.

After mixing PCS and titanium alkoxide, continuous SiO2/

TiO2 fibers were fabricated by the thermal decomposition

of titanium-modified PCS (PTC) precursor. The tensile

strength and diameter of SiO2/TiO2 fibers are 2.0 GPa,

13 lm, respectively. Based on X-ray diffraction (XRD),

scanning electron microscopy (SEM), and high resolution

transmission electron microscopy (HRTEM) measure-

ments, the microstructure of the SiO2/TiO2 fibers is

described as anatase–TiO2 nanocrystallites with the mean

size of *10 nm embedded in an amorphous silica con-

tinuous phase.

Introduction

Ceramic fibers used reinforcements in ceramic matrix

composites (CMCs) provide the skeletal structure of CMCs

and are major contributors to the composite’s mechanical

and physical properties [1–6]. Ceramic fibers fall into two

broad categories: (1) non-oxide fibers, such as SiC; and

(2) oxide fibers, such as aluminum oxide, mullite (3Al2O3–

2SiO2), and silica [1–8]. The sol–gel method is the most

common method of producing oxide fibers. First a fiber

precursor solution is filtered and concentrated to remove

excess solvent, forming a viscous spin dope. Then, con-

tinuous filaments are extruded by spinning. The filaments

are pyrolyzed to remove volatile components and then heat

treated above 800 �C to crystallize and sinter the fiber [1].

Non-oxide fibers are generally derived from polymeric

precursors, which often require complicated intermediate

processing before they can be pyrolyzed into ceramic fibers

[6–12]. As a class, polymer-derived SiC-based fibers are

the strongest ceramic fibers, which use polycarbosilane

(PCS) as a precursor. PCS, which is obtained by thermal

rearrangement reaction of PDMS, is silicon containing

polymer known as a good precursor for SiC fibers [8–15].

The PCS can be easily modified by chemical reactions with

a metallic alkoxide to obtain new systems [14–23]. For

example, polytitanocarbosilane, which is produced by a

condensation reaction of PCS with titanium (IV) tetraalk-

oxide, transforms into a SiC/TiC ceramic during thermal

decomposition in nitrogen atmosphere [14, 15]. Polyzirc-

onocarbosilane, which is synthesized by a condensation

reaction of PCS with zirconium (IV) acetylacetonate, is a

precursor of commercial Tyranno ZM SiC ceramic fiber

[16]. Polyaluminocarbosilane as a precursor of Tyranno SA

SiC ceramic fiber was prepared by thermolysis of a mixture

of PCS and aluminum acetylacetonate [21].

Recently, some researchers have shown that oxide fibers

could be obtained using PCS precursor [11, 13, 17]. A type

of SiO2/TiO2 fibers has been prepared by Ishikawa [17]

through polytitanocarbosilane precursor. The strength of

SiO2/TiO2 fibers obtained from PCS was markedly higher

([2.5 GPa) than that of ordinary sol–gel SiO2/TiO2 fibers

(\1 GPa). Up to now, there are few reports on the
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preparation of silica fibers made from PCS polymer pre-

cursor. The detailed study of SiO2 fiber from PCS pre-

cursor has not been disclosed. So, the aim of this work is to

produce and characterize a continuous SiO2/TiO2 fiber

from a titanium-modified PCS precursor (PTC) using the

following approaches:

(a) Synthesis of a polycarbosilane–titanium alkoxide

hybrid precursor,

(b) Spinning of the precursor in molten state,

(c) Maturing and air curing of the green fiber,

(d) Sintering and physcio-chemical characterization of

the fiber.

Experimental procedure

The PCS was prepared using a route that had been previ-

ously reported [9]. The process involves two steps: (i) the

partial conversion of PDMS into polysilacarbosilane

(PSCS) under atmospheric pressure and (ii) the thermolysis

condensation at 420 �C under atmospheric pressure of

PSCS into PCS. The PTC hybrid precursors were synthe-

sized from PCS and Ti(OC4H9)4. 20 g PCS and 20 g

Ti(OC4H9)4 were dissolved in 500 mL xylene in an 2 L,

three-neck round-bottom flask under nitrogen gas with

vigorous stirring at 100 �C. The mixture temperature was

maintained at 100 �C for 1 h, a clear solution was obtained,

and then increased to 150 �C to remove the xylene. The

solution turned from orange to dark blue. Finally, the

temperature was increased to 200 �C, and the reaction was

carried out for 5 more hours. PTC hybrid precursors with

dark blue color were obtained. PTC was melt-spun at

165 �C, and then the spun fiber was matured in air at

100 �C for 100 h. After maturation, the fiber materials

were thermally cured under air atmosphere with a ramp

rate of 20 �C h-1 to 200 �C and a dwell time of 5 h.

Finally, the cured fibers were thermally decomposed at

1200 �C for 1 h in air to obtain the SiO2/TiO2 fibers.

Fourier transform-infrared (FT-IR) spectra were recor-

ded between 4000 and 400 cm-1 on a Nicolet-360 spec-

trometer by the KBr pellet method. Gel permeation

chromatography (GPC) measurements were taken with

Waters-244 (eluent: THF 1 ml min-1, calibration with

polystyrene standards). Thermogravimetric (TG, Hi-Res

TGA 2950) analyses were conducted to examine the

ceramic yield of PTC. Elemental analyses of the TiO2/SiO2

fibers were performed on polished cross-section by electron

probe microanalysis (EPMA) using a Camebax 75

(Cameca) in the wavelength dispersion mode (thallium

acid phthalate (TAP) crystal for Si Ka, pentaerytritole

(PET) for Ti Ka and a multilayer pseudo crystal multilayer

(PCII) for C Ka and O Ka) with standard (SiC, Ti, and

SiO2) whose compositions were assumed to be stoichi-

ometric. The surface and crystal structure of the fibers were

analyzed by using a scanning electron microscopy (SEM:

JEOL JSM-6300) equipped with a WinEDS detector,

capable of detecting elements CB and X-ray diffractometer

(XRD: model Siemens D-500, Cu Ka). Transmission

electron microscopy (Tecnai F30, Philips-FEI, Eindhoven,

the Netherlands) was also used for microstructure exami-

nation. Tensile strength of the fibers was measured by

single-filament method (JIS R 7601) with gage length

25 mm (Model 2045, Corp. Shanghai).

Results and discussion

The precursor PTC was characterized by FT-IR, GPC, and

TGA. The average molecular weight of PTC is Mn ¼ 2200,

with a polydispersity index Ip = 2.5. The ceramic yield at

1200 �C in air is about 87%. The softening temperature of

PTC is about 110 �C. The FT-IR spectra of PCS and PTC

have been collected over the wavenumber range of 4000–

400 cm-1, however, only the 2500–500 cm-1 wavenumber

region is displayed in Fig. 1. The absorption peaks at 2950

and 2900 cm-1 (C–H stretching), 2100 cm-1 (Si–H

stretching), 1400 cm-1 (C–H deformation in Si-CH3),

1355 cm-1 (CH2 deformation in Si–CH2–Si), 1250 cm-1

(Si–CH3 deformation), 1020 cm-1 (CH2 deformation in

Si–CH2–Si), and in the vicinity of 800 cm-1 (Si–CH3

deformation and Si–C stretching) were seen, and these

suggest that the PTC was composed of nearly the same

Si–C skeleton as PCS. In addition, the characteristic

absorption band at 1090 cm-1 (Ti–O–C) attributed to

Ti(OC4H9)4 was observed in the FT-IR spectrum of the

PTC. In order to estimate the reaction degree of Si–H
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Fig. 1 FT-IR spectra of PCS and PTC
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bonds, the Si–H bond content was calculated from the absor-

bency ratio of characteristic absorption peaks at 2100 and

1250 cm-1 (ASi�H=ASi�CH3
). The values of ASi�H=ASi�CH3

ratio were 0.696 for PCS and 0.297 for PTC. Decrease in the

absorption peak at ASi�H=ASi�CH3
ratio and appearance of

absorption peak at 1090 cm-1 in the spectrum of the PTC

show the obvious difference in its structure from PCS. The

above results imply that the PTC is not a simple mixture of

PCS and Ti(OC4H9)4, which is converted from the polymeric

reaction of PCS with Ti(OC4H9)4. These results about the

reaction between PCS and Ti(OC4H9)4 are consistent with

the results reported from Okamura [19].

The chemical compositions of the SiO2/TiO2 fibers were

analyzed by EDS. Their EDS spectrum and result of

quantitative analysis by the Oxford Instruments INCA

software package (INCA Energy 200) were shown in

Fig. 2. As shown in Fig. 2, strong peaks for Si, Ti, and O

could be found in the spectrum. The result of quantitative

analysis (see the inset of Fig. 2) revealed that the Ti/Si

atomic ratio was 0.23. The values are consistent with the

theoretical Ti/Si atomic ratio (0.19). Figure 3 showed ele-

mental dot-maps of O, Si, and Ti concentrations for a

cross-section of SiO2/TiO2 fibers. All elements (O, Si, and

Ti) were observed to homogeneously distribute in the

fibers. And in the case of carbon element, it was not found.

The skeleton of the precursor PTC was Si–C bonds, and

consequently, carbon atoms existed in the main chain and

the side chain. During the thermal decomposition of PTC

green fiber in air, these carbon atoms were oxidized and are

completely evolved from the fiber. The oxidation of PCS

and Ti(OC4H9)4 in PTC transformed into amorphous silica

and TiO2 with the generation of H2O and CO2, respectively

[11–15, 19].

In Fig. 4, XRD patterns of SiO2/TiO2 fibers obtained

from PTC were shown. The PTC green fibers pyrolyzed

below 1200 �C give a broad diffuse hump at around

2h = 22.5�, confirming an amorphous structure. The dif-

fraction lines assigned to anatase become distinct with

increasing heat treatment temperature. In 1200 �C XRD

patterns, the broad diffraction peak at 2h = 22.5� is

assigned to amorphous silica. The XRD pattern also

exhibits one sharp peak and four small peaks corresponding

to those of anatase–TiO2 crystal, which are attributed to the

(101), (111), (200), (211), and (204) plane of anatase–TiO2

crystal [10]. These results show the microstructure of the

PTC green fibers pyrolyzed at 1200 �C is mainly composed

of anatase–TiO2 along with amorphous silica. In TiO2 fiber

obtained by sol–gel method, anatase appeared on heat

treatment at 150 �C and was converted into rutile above

700 �C. In particular, pure nanocrystalline anatase more

keV 

Element Wt% At%

SiK 44.53 36.69 

OK 38.13 54.98 

TiK 17.34 8.33 

Totals 100.00  

Fig. 2 EDS spectrum and quantitative analysis result of the SiO2/

TiO2 fibers

Fig. 3 Cross-section elemental dot-maps of the SiO2/TiO2 fibers.

Shown are concentrations of O, Si, and Ti
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Fig. 4 Change in XRD patterns with heat treatment temperature in

the fibers obtained from PTC in air
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easily converts to rutile at lower temperature (*500 �C)

[12–14]. In our case, although this fiber was pyrolyzed at

very high temperature (1200 �C), no obvious rutile phase

could be observed. It is thought that the surrounding SiO2

phase caused the stabilization of the anatase phase.

Figure 5 shows SEM micrograph and TEM image of

SiO2/TiO2 fibers. The fibers have a very smooth surface

without any observable flaws. The TEM images and cor-

responding SAD pattern show the SiO2/TiO2 fiber consists

of titania crystal and amorphous continuous phase. It

indicates titania nanoparticles embedded in an amorphous

matrix and reveals that the mean size of nanoparticles is

* 10 nm. This amorphous phase is concluded to be silica

from the thermal decomposition of PTC in air. It is well

known that, when pure PCS fibers are pyrolyzed in air, the

fibers are oxidized first to amorphous silica and then the

silica crystallizes to, probably a-quartz, eventually can not

retain fiber shape [18–20]. However, the PTC green fibers

were pyrolyzed at 1200 �C in air, the fiber shape could be

kept. Therefore, the greater stability of the PTC precursors

is due to the inhibition of the silica to crystallise due to the

presence of the titanium. At the same time, the presence of

TiO2 nanoclusters in fibers also increases the viscosity

preventing the collapse and the crystallization of the fibers.

There are analogues to be found in the manufacture of

other oxide systems used in fiber production [1].

The PTC can be continuously melt-spun and then

matured and cured in air. By pyrolysis of the cured PTC

fibers at temperatures above 400 �C in air, SiO2/TiO2 fibers

can be obtained. The fibers obtained are colorless and

transparent, and contain no carbon. Figure 6 shows the

tensile strength of the SiO2/TiO2 fibers prepared by pyro-

lyzing at various temperatures. The tensile strength of the

SiO2/TiO2 fibers increases as the pyrolysis temperature

increases. The increase of tensile strength of the SiO2/TiO2

fibers with pyrolysis temperature is typical for polymer-

derived ceramic fibers and is usually ascribed to the

organic–inorganic transformation [17–20]. The SiO2/TiO2

fibers have the maximum values at 1200 �C. After the

pyrolysis in air at 1200 �C, the PTC fibers shrank by a

Fig. 5 SEM micrograph and

TEM image of the SiO2/TiO2

fibers. a SEM micrograph of the

surface. b, c TEM image of the

SiO2/TiO2 fibers (c is

enlargement of one part of b).
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Fig. 6 The tensile strength of the SiO2/TiO2 fibers prepared by the

pyrolyzing at various temperatures in air

J Mater Sci (2010) 45:2670–2674 2673

123



remarkable 35% from 20 to 13 lm in an average diameter.

The high shrinkage of fibers indicates a high level of

densification, which is also typical for polymer-derived

ceramic fibers [9, 17–20]. Above 1300 �C heat treatment

temperature, the SiO2/TiO2 fibers obtained were stuck to

each other, so that measuring the mechanical properties of

the fiber was difficult. Figure 7 shows the SEM micrograph

of the SiO2/TiO2 fibers prepared by pyrolyzing at 1300 �C.

It could be observed that the surface of the SiO2/TiO2 fibers

from pyrolyzing at 1300 �C had an extremely rough sur-

face on which many particles of 5–10 lm in size, pre-

sumably TiO2 grain, had grown excessively during

treatment. Figure 8 shows XRD pattern of the SiO2/TiO2

fibers prepared by the pyrolyzing at 1300 �C in air. The

XRD pattern proved the nature of the crystalline phases in

the SEM picture. Therefore, the decrease of the tensile

strength above 1200 �C heat treatment temperature is

considered to be related to grain coarsening.

Conclusions

On the basis of a precursor method using PCS, we devel-

oped a process for preparing SiO2/TiO2 fibers. This process

treated the PTC precursor which was mixture of PCS and

Ti(OC4H9)4. The SiO2/TiO2 fibers were manufactured by

melt-spinning PTC, maturing and curing in air the resulting

fibers, followed by a final pyrolysis at 1200 �C in air. The

tensile strength and diameter of the SiO2/TiO2 fibers were

2.0 GPa, 13 lm, respectively. The microstructure of the

SiO2/TiO2 fibers can be described as anatase–TiO2 nano-

crystallites with the mean size of *10 nm embedded in an

amorphous silica continuous phase.
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